Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncol Res ; 31(6): 833-844, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744270

RESUMEN

Dihydroorotate dehydrogenase (DHODH) is a central enzyme of the de novo pyrimidine biosynthesis pathway and is a promising drug target for the treatment of cancer and autoimmune diseases. This study presents the identification of a potent DHODH inhibitor by proteomic profiling. Cell-based screening revealed that NPD723, which is reduced to H-006 in cells, strongly induces myeloid differentiation and inhibits cell growth in HL-60 cells. H-006 also suppressed the growth of various cancer cells. Proteomic profiling of NPD723-treated cells in ChemProteoBase showed that NPD723 was clustered with DHODH inhibitors. H-006 potently inhibited human DHODH activity in vitro, whereas NPD723 was approximately 400 times less active than H-006. H-006-induced cell death was rescued by the addition of the DHODH product orotic acid. Moreover, metabolome analysis revealed that H-006 treatment promotes marked accumulation of the DHODH substrate dihydroorotic acid. These results suggest that NPD723 is reduced in cells to its active metabolite H-006, which then targets DHODH and suppresses cancer cell growth. Thus, H-006-related drugs represent a potentially powerful treatment for cancer and other diseases.


Asunto(s)
Dihidroorotato Deshidrogenasa , Proteómica , Humanos , Transformación Celular Neoplásica , Ciclo Celular , Muerte Celular
2.
ACS Chem Biol ; 16(11): 2570-2580, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34730931

RESUMEN

Dihydroorotate dehydrogenase (DHODH) catalyzes the rate-limiting step in de novo pyrimidine biosynthesis and is a promising cancer treatment target. This study reports the identification of indoluidin D and its derivatives as inhibitors of DHODH. Cell-based phenotypic screening revealed that indoluidin D promoted myeloid differentiation and inhibited the proliferation of acute promyelocytic leukemia HL-60 cells. Indoluidin D also suppressed cell growth in various other types of cancer cells. Cancer cell sensitivity profiling with JFCR39 and proteomic profiling with ChemProteoBase revealed that indoluidin D is a DHODH inhibitor. Indoluidin D inhibited human DHODH activity in vitro; the DHODH reaction product orotic acid rescued indoluidin D-induced cell differentiation. We synthesized several indoluidin D diastereomer derivatives and demonstrated that stereochemistry was vital to their molecular activity. The indoluidin D derivative indoluidin E showed similar activity to its parent compound and suppressed tumor growth in a murine lung cancer xenograft model. Hence, indoluidin D and its derivatives selectively inhibit DHODH and suppress cancer cell growth.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Dihidroorotato Deshidrogenasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Animales , Antineoplásicos/química , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Bases de Datos de Proteínas , Inhibidores Enzimáticos/química , Humanos , Ratones , Proteómica , Estereoisomerismo , Ensayos Antitumor por Modelo de Xenoinjerto
3.
ACS Chem Biol ; 16(8): 1576-1586, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34296611

RESUMEN

Cancer cells reprogram their metabolism to survive and grow. Small-molecule inhibitors targeting cancer are useful for studying its metabolic pathways and functions and for developing anticancer drugs. Here, we discovered that glutipyran and its derivatives inhibit glycolytic activity and cell growth in human pancreatic cancer cells. According to proteomic profiling of glutipyran-treated cells using our ChemProteoBase, glutipyran was clustered within the group of endoplasmic reticulum (ER) stress inducers that included glycolysis inhibitors. Glutipyran inhibited glucose uptake and suppressed the growth of various cancer cells, including A431 cells that express glucose transporter class I (GLUT1) and DLD-1 GLUT1 knockout cells. When cotreated with the mitochondrial respiration inhibitor metformin, glutipyran exhibited a synergistic antiproliferative effect. Metabolome analysis revealed that glutipyran markedly decreased most metabolites of the glycolytic pathway and the pentose phosphate pathway. Glutipyran significantly suppressed tumor growth in a xenograft mouse model of pancreatic cancer. These results suggest that glutipyran acts as a broad-spectrum GLUT inhibitor and reduces cancer cell growth.


Asunto(s)
Antineoplásicos/uso terapéutico , Proteínas Facilitadoras del Transporte de la Glucosa/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Piranos/uso terapéutico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Femenino , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Metabolómica , Metformina/uso terapéutico , Ratones Endogámicos BALB C , Ratones Desnudos , Proteómica , Piranos/síntesis química , Piranos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Sci Rep ; 6: 29881, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27431267

RESUMEN

Mammalian p38 mitogen activated protein kinases (MAPKs) are responsive to a variety of cellular stresses. The development of specific pyridinyl imidazole inhibitors has permitted the characterization of the p38 MAPK isoform p38α, which is expressed in most cell types, whereas the physiological roles of p38γ and p38δ are poorly understood. In this study, we report an approach for identifying selective inhibitors against p38γ and p38δ by focusing on the difference in gatekeeper residues between p38α/ß and p38γ/δ. Using GST-fused p38α wild type and T106M mutant constructs, wherein the p38α gatekeeper residue (Thr-106) was substituted by the p38γ/δ-type (Met), we performed comparative chemical array screening to identify specific binders of the mutant and identified SU-002 bound to p38αT106M specifically. SU-002 was found to inhibit p38αT106M but not p38α kinase activity in in vitro kinase assays. SU-005, the analog of SU-002, had inhibitory effects against the kinase activity of p38γ and p38δ in vitro but not p38α. In addition, SU-005 inhibited both p38γ and p38δ auto-phosphorylation in HeLa and HEK293T cells. These results demonstrate that the comparative chemical array screening approach is a powerful technique to explore specific inhibitors for mutant proteins with even single amino-acid substitutions in a high-throughput manner.


Asunto(s)
Evaluación Preclínica de Medicamentos , Isoformas de Proteínas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Células HEK293 , Células HeLa , Humanos , Imidazoles/química , Imidazoles/farmacología , Fosforilación , Isoformas de Proteínas/genética , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas p38 Activadas por Mitógenos/genética
5.
Proc Natl Acad Sci U S A ; 102(42): 15253-8, 2005 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-16214889

RESUMEN

Steroid hormones are essential for development, and the precise control of their homeostasis is a prerequisite for normal growth. UDP-glycosyltransferases (UGTs) are considered to play an important regulatory role in the activity of steroids in mammals and insects. This study provides an indication that a UGT accepting plant steroids as substrates functions in brassinosteroid (BR) homeostasis. The UGT73C5 of Arabidopsis thaliana catalyses 23-O-glucosylation of the BRs brassinolide (BL) and castasterone. Transgenic plants overexpressing UGT73C5 displayed BR-deficient phenotypes and contained reduced amounts of BRs. The phenotype, which was already apparent in seedlings, could be rescued by application of BR. In feeding experiments with BL, wild-type seedlings converted BL to the 23-O-glucoside; in the transgenic lines silenced in UGT73C5 expression, no 23-O-glucoside was detected, implying that this UGT is the only enzyme that catalyzes BL-23-O-glucosylation in seedlings. Plant lines in which UGT73C5 expression was altered also displayed hypocotyl phenotypes previously described for seedlings in which BR inactivation by hydroxylation was changed. These data support the hypothesis that 23-O-glucosylation of BL is a function of UGT73C5 in planta, and that glucosylation regulates BR activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Colestanoles/metabolismo , Glucosiltransferasas/metabolismo , Esteroides Heterocíclicos/metabolismo , Animales , Proteínas de Arabidopsis/genética , Brasinoesteroides , Glucosiltransferasas/genética , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Regiones Promotoras Genéticas , Interferencia de ARN
6.
Nature ; 433(7022): 167-71, 2005 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-15650741

RESUMEN

Both animals and plants use steroids as signalling molecules during growth and development. Animal steroids are principally recognized by members of the nuclear receptor superfamily of transcription factors. In plants, BRI1, a leucine-rich repeat (LRR) receptor kinase localized to the plasma membrane, is a critical component of a receptor complex for brassinosteroids. Here, we present the first evidence for direct binding of active brassinosteroids to BRI1 using a biotin-tagged photoaffinity castasterone (BPCS), a biosynthetic precursor of brassinolide (the most active of the brassinosteroids). Binding studies using BPCS, (3)H-labelled brassinolide and recombinant BRI1 fragments show that the minimal binding domain for brassinosteroids consists of a 70-amino acid island domain (ID) located between LRR21 and LRR22 in the extracellular domain of BRI1, together with the carboxy-terminal flanking LRR (ID-LRR22). Our results demonstrate that brassinosteroids bind directly to the 94 amino acids comprising ID-LRR22 in the extracellular domain of BRI1, and define a new binding domain for steroid hormones.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Colestanoles/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Esteroides Heterocíclicos/metabolismo , Secuencia de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biotina/metabolismo , Brasinoesteroides , Reactivos de Enlaces Cruzados , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Proteínas Quinasas/genética , Estructura Terciaria de Proteína
7.
J Org Chem ; 64(14): 5280-5291, 1999 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34237850

RESUMEN

A series of iminocyclitols was prepared using a versatile synthetic strategy, and their inhibition of glycosidases was evaluated using capillary electrophoresis. The study has demonstrated that remarkable specificities in enzyme inhibition can be achieved with small modifications on the aglycon side chain and the ring nitrogen. Among the compounds synthesized, (2R,3R,4R,5R)-N-methyl-2-(acetamidomethyl)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidine was found to be very potent against ß-N-acetylhexosaminidase P with the Ki value of 80 nM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...